
Set 3: Informed Heuristic Search

ICS 271 Fall 2016

Kalev Kask

Basic search scheme
• We have 3 kinds of states

– explored (past) – only graph search

– frontier (current)

– unexplored (future) – implicitly given

• Initially frontier=start state

• Loop until found solution or exhausted state space

– pick/remove first node from frontier using search strategy
• priority queue – FIFO (BFS), LIFO (DFS), g (UCS), f (A*), etc.

– check if goal

– add this node to explored,

– expand this node, add children to frontier (graph search : only
those children whose state is not in explored list)

– Q: what if better path is found to a node already on explored list?
271-fall 2016

Overview

• Heuristics and Optimal search strategies (3.5-3.6)
– heuristics
– hill-climbing algorithms
– Best-First search
– A*: optimal search using heuristics
– Properties of A*

• admissibility,
• consistency,
• accuracy and dominance
• Optimal efficiency of A*

– Branch and Bound
– Iterative deepening A*
– Power/effectiveness of different heuristics
– Automatic generation of heuristics

271-Fall 2016

What is a heuristic?

271-Fall 2016

Heuristic Search
• State-Space Search: every problem is like search of a map

• A problem solving agent finds a path in a state-space graph from start

state to goal state, using heuristics

h= 253

h=329

h=374

Heuristic = straight-line distance
271-Fall 2016

State Space for Path Finding in a Map

271-Fall 2016

State Space for Path Finding on a Map

271-Fall 2016

Greedy Search Example

271-Fall 2016

State Space of the 8 Puzzle
Problem

8-puzzle: 181,440 states

15-puzzle: 1.3 trilion

24-puzzle: 10^25

Search space exponential

Use Heuristics

as people do

1 2 3

4 5 6

7 8

Initial state goal

271-Fall 2016

State Space of the 8 Puzzle
Problem 1 2 3

4 5 6

7 8

h1=4 h1=5

h1 = number of misplaced tiles

h2=9h2=9

h2 = Manhattan distance

271-Fall 2016

What are Heuristics
• Rule of thumb, intuition

• A quick way to estimate how close we are to the
goal. How close is a state to the goal..

• Pearl: “the ever-amazing observation of how much
people can accomplish with that simplistic, unreliable
information source known as intuition.”

8-puzzle

– h1(n): number of misplaced tiles

– h2(n): Manhattan distance

– h3(n): Gaschnig’s

• Path-finding on a map
– Euclidean distance

h1(S) = ? 8
h2(S) = ? 3+1+2+2+2+3+3+2 = 18
h3(S) = ? 8

Problem: Finding a Minimum Cost Path

• Previously we wanted an path with minimum number of
steps. Now, we want the minimum cost path to a goal G
– Cost of a path = sum of individual steps along the path

• Examples of path-cost:
– Navigation

• path-cost = distance to node in miles
– minimum => minimum time, least fuel

– VLSI Design
• path-cost = length of wires between chips

– minimum => least clock/signal delay

– 8-Puzzle
• path-cost = number of pieces moved

– minimum => least time to solve the puzzle

• Algorithm: Uniform-cost search … still somewhat blind

271-Fall 2016

Heuristic Functions

• 8-puzzle

– Number of misplaced tiles

– Manhattan distance

– Gaschnig’s

• 8-queen

– Number of future feasible slots

– Min number of feasible slots in a
row

– Min number of conflicts (in
complete assignments states)

• Travelling salesperson

– Minimum spanning tree

– Minimum assignment problem

C

DA

E

F

B

Best-First (Greedy) Search:
f(n) = number of misplaced tiles

271-Fall 2016

Greedy Best-First Search

• Evaluation function f(n) = h(n) (heuristic)

= estimate of cost from n to goal

• e.g., hSLD(n) = straight-line distance from n to
Bucharest

• Greedy best-first search expands the node
that appears to be closest to goal

271-Fall 2016

Greedy Best-First Search Example

271-Fall 2016

Greedy Best-First Search Example

271-Fall 2016

Greedy Best-First Search Example

271-Fall 2016

Greedy Best-First Search Example

271-Fall 2016

Problems with Greedy Search

• Not complete

– Gets stuck on local minimas and plateaus

• Infinite loops

• Irrevocable

• Not optimal

• Can we incorporate heuristics in systematic
search?

271-Fall 2016

Informed Search - Heuristic Search

• How to use heuristic knowledge in systematic search?
• Where? (in node expansion? hill-climbing ?)
• Best-first:

– select the best from all the nodes encountered so far in OPEN.
– “good” use heuristics

• Heuristic estimates value of a node
– promise of a node
– difficulty of solving the subproblem
– quality of solution represented by node
– the amount of information gained.

• f(n) - heuristic evaluation function.
– depends on n, goal, search so far, domain

271-Fall 2016

Best-First Algorithm BF (*)

1. Put the start node s on a list called OPEN of unexpanded nodes.

2. If OPEN is empty exit with failure; no solutions exists.

3. Remove the first OPEN node n at which f is minimum (break ties arbitrarily), and place it on a list called

CLOSED to be used for expanded nodes.

4. If n is a goal node, exit successfully with the solution obtained by tracing the path along the pointers from

the goal back to s.

5. Otherwise expand node n, generating all it’s successors with pointers back to n.

6. For every successor n’ on n:

a. Calculate f (n’).

b. if n’ was neither on OPEN nor on CLOSED, add it to OPEN. Attach a

pointer from n’ back to n. Assign the newly computed f(n’) to node n’.

c. if n’ already resided on OPEN or CLOSED, compare the newly

computed f(n’) with the value previously assigned to n’. If the old

value is lower, discard the newly generated node. If the new value is lower, substitute it for the old (n’

now points back to n instead of to its previous predecessor). If the matching node n’ resides on CLOSED,

move it back to OPEN.

7. Go to step 2.

* With tests for duplicate nodes.

271-Fall 2016

A* Search

• Idea:
– avoid expanding paths that are already expensive

– focus on paths that show promise

• Evaluation function f(n) = g(n) + h(n)

• g(n) = cost so far to reach n

• h(n) = estimated cost from n to goal

• f(n) = estimated total cost of path through n to goal

271-Fall 2016

A* Search Example

271-Fall 2016

A* Search Example

271-Fall 2016

A* Search Example

271-Fall 2016

A* Search Example

271-Fall 2016

A* Search Example

271-Fall 2016

A* Search Example

271-Fall 2016

A* on 8-Puzzle with h(n) = # misplaced tiles

271-Fall 2016

A*- a Special Best-First Search

• Goal: find a minimum sum-cost path
• Notation:

– c(n,n’) - cost of arc (n,n’)
– g(n) = cost of current path from start to node n in the search tree.
– h(n) = estimate of the cheapest cost of a path from n to a goal.
– evaluation function: f = g+h

• f(n) estimates the cheapest cost solution path that goes through n.
– h*(n) is the true cheapest cost from n to a goal.
– g*(n) is the true shortest path from the start s, to n.
– C* is the cost of optimal solution.

• If the heuristic function, h always underestimates the true cost
(h(n) is smaller than h*(n)), then A* is guaranteed to find an
optimal solution.

271-Fall 2016

S G

A B

D E

C

F

4.06.710.4

11.0

8.9
6.9

3.0

1 4

S G

A B

D E

C

F

2

2

5
2 4

3

5

271-Fall 2016

Example of A* Algorithm in Action

7 + 4 = 11

S

A D

B D

C E E

B F

G

2 +10.4 = 12.4
5 + 8.9 = 13.9

3 + 6.7 = 9.7

8 + 6.9 = 14.9

4 + 8.9 = 12.9

6 + 6.9 = 12.9

11 + 6.7 = 17.7

10 + 3.0 = 13

13 + 0 = 13

Dead End

271-Fall 2016

1 4

S
G

A B

D E

C

F

2

2

5
2 4

3

5
S G

A B

D E

C

F

4.06.710.4

11.0

8.9
6.9

3.0

1

2

3

4

5

6

7

8

Algorithm A* (with any h on search Graph)

• Input: an implicit search graph problem with cost on the arcs
• Output: the minimal cost path from start node to a goal node.

– 1. Put the start node s on OPEN.
– 2. If OPEN is empty, exit with failure
– 3. Remove from OPEN and place on CLOSED a node n having minimum f.
– 4. If n is a goal node exit successfully with a solution path obtained by

tracing back the pointers from n to s.
– 5. Otherwise, expand n generating its children and directing pointers

from each child node to n.
• For every child node n’ do

– evaluate h(n’) and compute f(n’) = g(n’) +h(n’)= g(n)+c(n,n’)+h(n’)
– If n’ is already on OPEN or CLOSED compare its new f with the old f. If the

new value is higher, discard the node. Otherwise, replace old f with new f
and reopen the node.

– Else, put n’ with its f value in the right order in OPEN

– 6. Go to step 2.

271-Fall 2016

Behavior of A* -
Termination/Completeness

• Theorem (completeness) (Hart, Nilsson and Raphael, 1968)

– A* always terminates with a solution path (h is not necessarily
admissible) if

• costs on arcs are positive, above epsilon
• branching degree is finite.

• Proof: The evaluation function f of nodes expanded must
increase eventually (since paths are longer and more
costly) until all the nodes on a solution path are expanded.

271-Fall 2016

Admissible A*

• The heuristic function h(n) is called admissible if h(n) is never
larger than h*(n), namely h(n) is always less or equal to true
cheapest cost from n to the goal.

• A* is admissible if it uses an admissible heuristic, and h(goal) = 0.

• If the heuristic function, h always underestimates the true cost
(h(n) is smaller than h*(n)), then A* is guaranteed to find an
optimal solution.

271-Fall 2016

A* with inadmissible h

271-Fall 2016

→293

513=220+293

Consistent (monotone) Heuristics

• A heuristic is consistent if for every node n, every successor n' of n generated by any action a,

h(n) ≤ c(n,a,n') + h(n')

• If h is consistent, we have

f(n') = g(n') + h(n')
= g(n) + c(n,a,n') + h(n')
≥ g(n) + h(n)
= f(n)

• i.e., f(n) is non-decreasing along any path.

• Theorem: If h(n) is consistent, f along any path is non-decreasing.
• Corollary: the f values seen by A* are non-decreasing.

271-Fall 2016

Consistent Heuristics

• If h is consistent and h(goal)=0 then h is admissible
– Proof: (by induction of distance from the goal)

• An A* guided by consistent heuristic finds an optimal paths to
all expanded nodes, namely g(n) = g*(n) for any expanded n.

– Proof: Assume g(n) > g*(n) and n expanded along a non-optimal path.
– Let n’ be the shallowest OPEN node on optimal path p to n 
– g(n’) = g*(n’) and therefore f(n’)=g*(n’)+h(n’)
– Due to consistency we get f(n’) <=g*(n’)+c(n’,n)+h(n)
– Since g*(n) = g*(n’)+c(n’,n) along the optimal path, we get that
– f(n’) <= g*(n) + h(n)
– And since g(n) > g*(n) then f(n’) < g(n)+h(n) = f(n), contradiction

271-Fall 2016

Behavior of A* - Optimality

• Theorem (completeness for optimal solution) (HNL, 1968):
– If the heuristic function is

• admissible (tree search or graph search with explored node re-opening)
• consistent (graph search w/o explored node re-opening)

– then A* finds an optimal solution.

• Proof:
– 1. A*(admissible/consistent) will expand only nodes whose f-values are

less (or equal) to the optimal cost path C* (f(n) is less-or-equal C*).
– 2. The evaluation function of a goal node along an optimal path equals

C*.

• Lemma:
– Anytime before A*(admissible/consistent) terminates there exists and

OPEN node n’ on an optimal path with f(n’) <= C*.

271-Fall 2016

Requirements for Optimality

• Tree search

– Need admissibility

• Graph search, without re-opening closed nodes

– Need consistency

• Graph search, with re-opening closed nodes

– Admissibility is enough

271-Fall 2016

Inconsistent but admissible

271-Fall 2016

Consistency : h(ni) <= c(ni,nj) + h(nj)

or c(ni,nj) >= h(ni) - h(nj)

or c(ni,nj) >= ∆h

Summary so far

• Heuristic

• Best First Search : any f

• A* : f=g+h

– Admissible : h <= h*

– Consistent : monotonic f

271-Fall 2016

A* with Consistent Heuristics
• A* expands nodes in order of increasing f value

• Gradually adds "f-contours" of nodes

• Contour i has all nodes with f=fi, where fi < fi+1

271-Fall 2016

Summary of Consistent Heuristics

• h is consistent if the heuristic function satisfies triangle inequality for every n and
its child node n’: h(ni) <= h(nj) + c(ni,nj)

• When h is consistent, the f values of nodes expanded by A* are never decreasing.
• When A* selected n for expansion it already found the shortest path to it.
• When h is consistent every node is expanded once.
• Normally the heuristics we encounter are consistent

– the number of misplaced tiles
– Manhattan distance
– straight-line distance

271-Fall 2016

A* properties

• A* expands every path along which f(n) < C*

• A* will never expand any node such that f(n) > C*

• If h is consistent A* will expand any node such that f(n) < C*

• Therefore, A* expands all the nodes for which f(n) < C* and
a subset of the nodes for which f(n) = C*.

• Therefore, if h1(n) < h2(n) clearly the subset of nodes
expanded by h2 is smaller.

271-Fall 2016

Complexity of A*
• A* is optimally efficient (Dechter and Pearl 1985):

– It can be shown that all algorithms that do not expand a node which A*
did expand (inside the contours) may miss an optimal solution

• A* worst-case time complexity:
– is exponential unless the heuristic function is very accurate

• If h is exact (h = h*)
– search focus only on optimal paths

• Main problem:
– space complexity is exponential
– Not anytime; all or nothing … but largest f expanded is lower bound on

C*

• Effective branching factor:
– Number of nodes generated by a “typical” search node
– Approximately : b* = N^(1/d)

• Q: what is you are given a solution (not necessarily optimal); can
you improve A* performance?

271-Fall 2016

The Effective Branching Factor

271-Fall 2016

271-Fall 2016

S G

A B

D E

C

F

4.06.710.4

11.0

8.9
6.9

3.0

S G

A B

D E

C

F

2

1

2

5

4

2 4
3

5

271-Fall 2016

Example of Branch and Bound in Action

S

A D
2+10.4=12.4 5+8.9=13.9

271-Fall 2016

DB 4+8.9=12.9

3+6.7=9.7

1

2

3

EC
8+6.9=14.9

7+4=11

4 5

D
F

10+8.9=18.912+3=15 6

G
L=15+0=15

7

E 6+6.9=12.9

8

9

F10+3=13
10

G
L=13+0=13

11

B

11+6.7=17.7

1 4A B C

S G

D E F

2

2

5 2 4 3

5

S G

A B

D E

C

F

4.06.710.4

11.0

8.9
6.9

3.0

Example of A* Algorithm in Action

7 + 4 = 11

S

A D

B D

C E E

B F

G

2 +10.4 = 12.4
5 + 8.9 = 13.9

3 + 6.7 = 9.7

8 + 6.9 = 14.9

4 + 8.9 = 12.9

6 + 6.9 = 12.9

11 + 6.7 = 17.7

10 + 3.0 = 13

13 + 0 = 13

Dead End

271-Fall 2016

1 4

S
G

A B

D E

C

F

2

2

5
2 4

3

5
S G

A B

D E

C

F

4.06.710.4

11.0

8.9
6.9

3.0

1

2

3

4

5

6

7

8

Pseudocode for Branch and Bound Search
(An informed depth-first search)

Initialize: Let Q = {S}, L=∞

While Q is not empty

pull Q1, the first element in Q

if f(Q1)>=L, skip it

if Q1 is a goal compute the cost of the solution and update

L <-- minimum (new cost, old cost)

else

child_nodes = expand(Q1),

<eliminate child_nodes which represent simple loops>,

For each child node n do:

evaluate f(n). If f(n) is greater than L discard n.

end-for

Put remaining child_nodes on top of queue in the order of their f.

end

Continue

271-Fall 2016

Properties of Branch-and-Bound
• Not guaranteed to terminate unless

– has depth-bound

– admissible f and reasonable L

• Optimal:

– finds an optimal solution (f is admissible)

• Time complexity: exponential

• Space complexity: can be linear

• Advantage:

– anytime property

• Note : unlike A*, BnB may (will) expand nodes f>C*.
271-Fall 2016

Iterative Deepening A* (IDA*)
(combining Branch-and-Bound and A*)
• Initialize: f <-- the evaluation function of the start node
• until goal node is found

– Loop:
• Do Branch-and-bound with upper-bound L equal to current evaluation function f.
• Increment evaluation function to next contour level

– end

• Properties:
– Guarantee to find an optimal solution
– time: exponential, like A*
– space: linear, like B&B.

• Problems: The number of iterations may be large - ∆f may be ɛ.

271-Fall 2016

Relationships among Search Algorithms

271-Fall 2016

Effectiveness of heuristic search

• How quality of the heuristic impacts search?

• What is the time and space complexity?

• Is any algorithm better? Worse?

• Case study: the 8-puzzle

271-Fall 2016

Admissible and Consistent Heuristics?
E.g., for the 8-puzzle:

• h1(n) = number of misplaced tiles

• h2(n) = total Manhattan distance

(i.e., no. of squares from desired location of each tile)

The true cost is 26.

Average cost for 8-puzzle is 22. Branching degree 3.

• h1(S) = ? 8

• h2(S) = ? 3+1+2+2+2+3+3+2 = 18

271-Fall 2016

Effectiveness of A* Search Algorithm

d IDS A*(h1) A*(h2)

2 10 6 6

4 112 13 12

8 6384 39 25

12 364404 227 73

14 3473941 539 113

20 ------------ 7276 676

24 ------------ 39135 1641

Average number of nodes expanded

Average over 100 randomly generated 8-puzzle problems

h1 = number of tiles in the wrong position

h2 = sum of Manhattan distances271-Fall 2016

Dominance

• Definition: If h2(n) ≥ h1(n) for all n (both admissible) then h2
dominates h1

• Is h2 better for search?

• Typical search costs (average number of nodes expanded):

• d=12 IDS = 3,644,035 nodes
A*(h1) = 227 nodes
A*(h2) = 73 nodes

• d=24 IDS = out of memory
A*(h1) = 39,135 nodes
A*(h2) = 1,641 nodes

271-Fall 2016

Heuristic’s Dominance and Pruning Power

• Definition:
– A heuristic function h2 (strictly) dominates h1 if both are

admissible and for every node n, h2(n) is (strictly) greater than
h1(n).

• Theorem (Hart, Nilsson and Raphale, 1968):
– An A* search with a dominating heuristic function h2 has the

property that any node it expands is also expanded by A*
with h1.

• Question: Does Manhattan distance dominate the
number of misplaced tiles?

• Extreme cases
– h = 0
– h = h*

271-Fall 2016

Inventing Heuristics automatically

• Examples of Heuristic Functions for A*

– The 8-puzzle problem
• The number of tiles in the wrong position

– is this admissible?

• Manhattan distance
– is this admissible?

– How can we invent admissible heuristics in general?
• look at “relaxed” problem where constraints are removed

– e.g.., we can move in straight lines between cities

– e.g.., we can move tiles independently of each other

271-Fall 2016

Inventing Heuristics Automatically (cont.)
• How did we

– find h1 and h2 for the 8-puzzle?
– verify admissibility?
– prove that straight-line distance is admissible? MST admissible?

• Hypothetical answer:
– Heuristic are generated from relaxed problems
– Hypothesis: relaxed problems are easier to solve

• In relaxed models the search space has more operators or more
directed arcs

• Example: 8 puzzle:
– Rule : a tile can be moved from A to B, iff

• A and B are adjacent
• B is blank

– We can generate relaxed problems by removing one or more of the
conditions

• … if A and B are adjacent
• ... if B is blank

271-Fall 2016

Relaxed Problems

• A problem with fewer restrictions on the actions is called a
relaxed problem

• The cost of an optimal solution to a relaxed problem is an
admissible heuristic for the original problem

• If the rules of the 8-puzzle are relaxed so that a tile can move
anywhere, then h1(n) (number of misplaced tiles) gives the
shortest solution

• If the rules are relaxed so that a tile can move to any h/v
adjacent square, then h2(n) (Manhatten distance) gives the
shortest solution

271-Fall 2016

Generating heuristics (cont.)

• Example: TSP

• Find a tour. A tour is:

– 1. A graph with subset of edges

– 2. Connected

– 3. Total length of edges minimized

– 4. Each node has degree 2

• Eliminating 4 yields MST.

271-Fall 2016

271-Fall 2016

Automating Heuristic generation
• Use STRIPs language representation:
• Operators:

– pre-conditions, add-list, delete list
• 8-puzzle example:

– on(x,y), clear(y) adj(y,z) ,tiles x1,…,x8
• States: conjunction of predicates:

– on(x1,c1),on(x2,c2)….on(x8,c8),clear(c9)
• move(x,c1,c2) (move tile x from location c1 to location c2)

– pre-cond: on(x1,c1), clear(c2), adj(c1,c2)
– add-list: on(x1,c2), clear(c1)
– delete-list: on(x1,c1), clear(c2)

• Relaxation:
– Remove from precondition: clear(c2), adj(c2,c3)  #misplaced tiles
– Remove clear(c2) Manhattan distance
– Remove adj(c2,c3)  h3, a new procedure that transfers to the empty

location a tile appearing there in the goal
• The space of relaxations can be enriched by predicate refinements

– adj(y,z) = iff neigbour(y,z) and same-line(y,z)

271-Fall 2016

Heuristic generation

• Theorem: Heuristics that are generated from relaxed models
are consistent.

• Proof: h is true shortest path in a relaxed model

– h(n) <=c’(n,n’)+h(n’) (c’ are shortest distances in relaxed
graph)

– c’(n,n’) <=c(n,n’)

–  h(n) <= c(n,n’)+h(n’)

271-Fall 2016

Heuristic generation
• Total (time) complexity = heuristic computation + nodes

expanded

• More powerful heuristic – harder to compute, but more pruning
power (fewer nodes expanded)

• Problem:

– not every relaxed problem is easy

• How to recognize a relaxed easy problem

• A proposal: a problem is easy if it can be solved optimally
by a greedy algorithm

• Q: what if neither h1 nor h2 is clearly better? max(h1, h2)

• Often, a simpler problem which is more constrained is easier;
will provide a good upper-bound.

271-Fall 2016

Improving Heuristics

• Reinforcement learning.

• Pattern Databases: you can solve optimally a
sub-problem

271-Fall 2016

Pattern Databases
• For sliding tiles and Rubic’s cube

• For a subset of the tiles compute shortest path to the goal using
breadth-first search

• For 15 puzzles, if we have 7 fringe tiles and one blank, the number of
patterns to store are 16!/(16-8)! = 518,918,400.

• For each table entry we store the shortest number of moves to the
goal from the current location.

• Use different subsets of tiles and take the max heuristic during IDA*
search. The number of nodes to solve 15 puzzles was reduced by a
factor of 346 (Culberson and Schaeffer)

• How can this be generalized? (a possible project)

271-Fall 2016

Beyond Classical Search
• AND/OR search spaces

– Decomposable independent problems

– Searching with non-deterministic actions (erratic vacuum)

– Using AND/OR search spaces; solution is a contingent plan

• Local search for optimization
– Greedy hill-climbing search, simulated annealing, local beam search,

genetic algorithms.

– Local search in continuous spaces

– SLS : "Like climbing Everest in thick fog with amnesia"

• Searching with partial observations
– Using belief states

• Online search agents and unknown environments
– Actions, costs, goal-tests are revealed in state only

– Exploration problems. Safely explorable

271-Fall 2016

Course project

Choose one of the following

1. N-queens

2. (Classic) Sokoban

3. Sudoku

4. Mastermind

Problem-reduction representations
AND/OR search spaces

• Decomposable production systems (language parsing)
Initial database: (C,B,Z)
Rules: R1: C (D,L)

R2: C (B,M)
R3: B (M,M)
R4: Z  (B,B,M)

Find a path generating a string with M’s only.

• Graphical models
• The tower of Hanoi

To move n disks from peg 1 to peg 3 using peg 2
Move n-1 pegs to peg 2 via peg 3,
move the nth disk to peg 3,
move n-1 disks from peg 2 to peg 3 via peg 1.

271-Fall 2016

271-Fall 2016

AND/OR search spaces

non-deterministic actions : the erratic vacuum world

AND/OR Graphs
• Nodes represent subproblems

– AND links represent subproblem decompositions
– OR links represent alternative solutions
– Start node is initial problem
– Terminal nodes are solved subproblems

• Solution graph
– It is an AND/OR subgraph such that:

• It contains the start node
• All its terminal nodes (nodes with no successors) are solved primitive

problems
• If it contains an AND node A, it must contain the entire group of AND links

that leads to children of A.

271-Fall 2016

Algorithms searching AND/OR graphs

• All algorithms generalize using hyper-arc successors rather than simple
arcs.

• AO*: is A* that searches AND/OR graphs for a solution subgraph.

• The cost of a solution graph is the sum cost of it arcs. It can be defined
recursively as: k(n,N) = c_n+k(n1,N)+…k(n_k,N)

• h*(n) is the cost of an optimal solution graph from n to a set of goal nodes

• h(n) is an admissible heuristic for h*(n)
• Monotonicity:
• h(n)<= c+h(n1)+…h(nk) where n1,…nk are successors of n

• AO* is guaranteed to find an optimal solution when it terminates if the
heuristic function is admissible

271-Fall 2016

Local Search

271-Fall 2016

271-Fall 2016

Summary

• In practice we often want the goal with the minimum cost path

• Exhaustive search is impractical except on small problems

• Heuristic estimates of the path cost from a node to the goal can
be efficient in reducing the search space.

• The A* algorithm combines all of these ideas with admissible
heuristics (which underestimate) , guaranteeing optimality.

• Properties of heuristics:
– admissibility, consistency, dominance, accuracy

• Reading
– R&N Chapters 3-4

271-Fall 2016

